Toward a national eDNA strategy for the United States Ryan P. Kelly¹, David M. Lodge², Kai N. Lee³, Susanna Theroux⁴, Adam J. Sepulveda⁵, Christopher A. Scholin⁶, Joseph M. Craine⁷, Elizabeth Andruszkiewicz Allan¹, Krista M. Nichols⁸, Kim M. Parsons⁸, Kelly D. Goodwin⁹, Zachary Gold¹⁰, Francisco P. Chavez⁶, Rachel T. Noble¹¹, Cathryn L. Abbott¹², Melinda R. Baerwald¹³, Amanda M. Naaum¹⁴, Peter M. Thielen¹⁵, Ariel Levi Simons¹⁶, Christopher L. Jerde¹⁷, Jeffrey J. Duda¹⁸, Margaret E. Hunter¹⁹, John A. Hagan²⁰, Rachel Sarah Meyer¹⁶, Joshua A. Steele⁴, Mark Y. Stoeckle²¹, Holly M. Bik²², Christopher P. Meyer²³, Eric Stein⁴, Karen E. James²⁴, Austen C. Thomas²⁵, Elif Demir-Hilton²⁶, Molly A. Timmers²⁷, John F. Griffith⁴, Michael J. Weise²⁸, Stephen B. Weisberg⁴ ## **ABSTRACT** Environmental DNA (eDNA) data make it possible to measure and monitor biodiversity at unprecedented resolution and scale. As use-cases multiply and scientific consensus grows regarding the value of eDNA analysis, public agencies have an opportunity to decide how and where eDNA data fit into their mandates. Within the United States, many federal and state agencies are individually using eDNA data in various applications and developing relevant scientific expertise. A national strategy for eDNA implementation would ¹University of Washington, School of Marine and Environmental Affairs, Seattle, WA, USA ²Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA ³Owl of Minerva LLC, Indianapolis, IN, USA ⁴Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA ⁵U.S. Geological Survey Northern Rocky Mountain Science Center, Bozeman, MT, USA ⁶Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA ⁷Jonah Ventures, Boulder, CO, USA ⁸Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA ⁹Atlantic Oceanographic & Meterological Laboratory (stationed at Southwest Fisheries Science Center), National Oceanic and Atmospheric Administration, La Jolla, CA, USA ¹⁰NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA ¹¹Department of Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, UNC Chapel Hill, Morehead, NC, USA ¹²Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada ¹³Division of Integrated Science and Engineering, California Department of Water Resources, Sacramento, CA, USA ¹⁴NatureMetrics North America Ltd, Guelph, Ontario, Canada ¹⁵Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA ¹⁶Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA ¹⁷University of California, Santa Barbara, CA, USA ¹⁸U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA ¹⁹U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA ²⁰Northwest Indian Fisheries Commission, Olympia, WA, USA ²¹Program for the Human Environment, The Rockefeller University, New York, NY, USA ²²Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, GA, USA ²³National Museum of Natural History, Smithsonian Institution, Washington, DC, USA ²⁴Maine Center for Genetics in the Environment, University of Maine, Orono, ME, USA ²⁵Molecular Division, Smith-Root, Inc, Vancouver, WA, USA ²⁶Oceankind, Palo Alto, CA, USA ²⁷National Geographic Society, Washington, DC, USA ²⁸Office of Naval Research, Marine Mammals & Biology Program, Arlington, VA, USA capitalize on recent scientific developments, providing a common set of next-generation tools for natural resource management and public health protection. Such a strategy would avoid patchwork and possibly inconsistent guidelines in different agencies, smoothing the way for efficient uptake of eDNA data in management. Because eDNA analysis is already in widespread use in both ocean and freshwater settings, we focus here on applications in these environments. However, we foresee the broad adoption of eDNA analysis to meet many resource management issues across the nation because the same tools have immediate terrestrial and aerial applications. ## **KEYWORDS** environmental DNA, federal, genetic, implementation, management, natural resources, policy ## **Full Text:** https://ftp.sccwrp.org/pub/download/DOCUMENTS/JournalArticles/1336 eDNAStrategy.pdf